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What do we mean with “Learning from Experience”?
An unbiased first view

n Process of learning through experience (aka Hands-On-Learning)

n “Experiential Learning”-Model by Kolb et al.:

http://www2.le.ac.uk/departments/gradschool/training/resources/teaching/theories/kolb
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What do we mean with “Learning from Experience”?
An unbiased first view

n Process of learning through experience (aka Hands-On-Learning)

n “Experiential Learning”-Model by Kolb et al.:

n No Teacher, simply meaning-making direct experience, but the learner must

n be willing to be actively involved in the experience;

n be able to reflect on the experience;

n possess and use analytical skills to conceptualize the experience; and

n possess decision making and problem solving skills in order to use the new ideas
gained from the experience.

Concrete
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Active
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Abstract
Conceptualization

Reflective
Observation

C’mon, why don’t we use a neural network for this?!

http://www2.le.ac.uk/departments/gradschool/training/resources/teaching/theories/kolb
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Learning from Experience
Continual Learning

n Continual Learning is the ability of a model to 

n Learn continually from a stream of data,

n build on what was previously learnt (i.e., positive transfer), and

n remember previously seen tasks.

n Applications? Relevance?

n Technical requirements:

n Efficiency

n Adaptiveness

n Scalability
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Learning from Experience
The technical view

n Unsupervised learning

n Modeling probability distributions

n Clustering

n Detecting Anomalies

n Supervised learning

n Derive a function that maps input data to output data

n Goal: Minimize empirical risk

n Many aspects to consider: Bias-variance tradeoff, function complexity 
and regularization, inductive Bias, non-linearities, non i.i.d., fairness, …
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Learning from Experience
The technical view: Reinforcement Learning

n Derive a sequence of actions that maximize a notion of 
cumulative reward (a policy)

n Solve the “Markov Decision Process (MDP)” in
interaction with the environment

action

reward

state

environment
changes

agent
trains
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Learning from Experience
The technical view: Reinforcement Learning

n Run in experiments

n Data is provided step by step; data evolves

n From many experiments the agent learns a function
(e.g. a neural network) that assigns probabilities (or 
values) to states or state-action-pairs

n Challenges:

n Labeled samples not available

n Reward may have a delay
à sub-optimal actions do not get corrected

n Balance exploration vs. exploitation

n State spaces may become large
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Learning from Experience
The technical view: Reinforcement Learning & Deep Learning

n Problem: in reality state spaces are large and can hardly be enumerated

n Many environments do not provide an abstract form of a state

à Combine RL with Deep Learning
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Case Study: Car Crash Scenario
Intelligent ADAS using (Deep) RL
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Case Study: Car Crash Scenario
How to get this into a running prototype

Problem Training Validation DeploymentSimulator
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Case Study: Car Crash Scenario
Formalize the Problem

Problem Training Validation DeploymentSimulator
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Case Study: Car Crash Scenario
Formalize the Problem

n State space:

n everything in the simulator (too much and most of it irrelevant)

n Observation space (final 19 – after many trial-and-error attempts):

n ego vehicle location in x, y; ego vehicle pitch, roll, yaw angles; ego 
vehicle speed in x, y; Distance + angle from 1 waypoint ahead; ego 
vehicle acceleration in x, y; throttle, steering, braking commands; 
timestep; Obstacle bounding box location in x, y; Obstacle bounding 
box extend in x, y

n Alternative: camera input

n Action spaces:

n Discrete: throttle 0 or 1, brake 0 or 1, steering discretizing in 7 points 

n Continuous: throttle in [0, 1], brake in [0,1], steering in [-1, +1]

Problem Training Validation DeploymentSimulator
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Case Study: Car Crash Scenario
Formalize the Problem

n Designing the setup:

n Goal: define several skills (i.e., one agent = one skill) and train those low-level agents/skills in different 
scenarios/environments

n Adhere to ethical rules

n Train a high-level supervisor to select strategies in difficult situations

n We can use other low-level controllers (e.g. MPC, or hard-coded rules)

n Reward process structure:

n Many such problems were too hard to learn

n We need to come up with a strategy to shape the rewards

n Curriculum Learning:

1. Go around the obstacle

2. Go around the obstacle without collisions

Problem Training Validation DeploymentSimulator
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Case Study: Car Crash Scenario
Setting up the simulator

n OpenAI gym

n Standardized interface to develop and test RL applications

n Many tools publicly available (tensorboard, algorithms, …)

n Use CARLA within the OpenAI gym environment

n No native support as of today à build APIs

n Get synchronized sensor data (HW-independent)

n Modification to CARLA

n Physics engine does not provide the information we need

n Cluster usage not out-of-the-box

Problem Training Validation DeploymentSimulator
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Case Study: Car Crash Scenario
Training the agents

n Question #1: preprocessed state space or raw images?

n We implemented and tested both

n Requires and good training and testing

n Outcome: images contain information that we should use in
combination with other sensors and already implemented pipelines

n Question #2: discrete or continuous actions? which algorithm?

n Continuous: PPO2, DDPG/TD3, SAC; Discrete: PPO2, DDQN

n Both converge to (roughly) the same solutions

n Question #3: how to randomize your task?

n Not explicitly but implicitly by the simulator (low-level randomization)

n Task-level randomization requires careful definition

n Question #4: how to select among the available skills?

Problem Training Validation DeploymentSimulator



16

© Fraunhofer IIS 

Learning from Experience

Case Study: Car Crash Scenario
Validating the agents

Problem Training Validation DeploymentSimulator
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Case Study: Car Crash Scenario
Validating the agents

Problem Training Validation DeploymentSimulator

(low-level controller) (high-level controller)
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Case Study: Car Crash Scenario
Deployment

n Long story short: we did not do this yet J

n Someone in the audience has a car and a racetrack for us?

n Usually with deployment of ML/RL models we see unexpected behavior of agents

n This might have various reasons:

n The simulator is not true replica of the real world and we did not randomize enough

n The agent exploits simulator mismatch (it ”cheats”)

n Representation of sensors is unstable/different

n …

Problem Training Validation DeploymentSimulator
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Challenges
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Current Challenges in Reinforcement Learning

Sensor Degradation

Explainability

(Simulator) Mismatch

Continual Learning A-priori Knowledge

Safe Exploration Adversaries

Sample Efficiency
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Summary

n Continual Learning is a cross-sectional discipline in machine learning

n It is better understood as a requirement that aims for a bag of wishes:

n Meta-learning, Few shot learning, Lifelong Learning, Multi-Task Learning, Transfer Learning

n RL can be considered as one method that inherently uses the concept of continual learning by design

n But there are also other powerful frameworks such as Bayesian Optimization, Online SVR, Online 
Convex Optimization…

n Applications at Fraunhofer include:

n Adaptive Sensorics (re-configurating measurement devices; measurement planning)

n Adapting models to changed environments (e.g. radio-based localization)

n Optimizing material flow, logistics, …


