EFFIZIENTERE DATENGETRIEBENE PROJEKTE DURCH AUTOMATISIERTES MASCHINELLES LERNEN

Dr. Janek Thomas

janek.thomas@scs.fraunhofer.de

Machine Learning

One goal of ML is to replace human decision processes, with their preferences, bias and unreliability, with an optimal* automatic data driven process.

*Optimal w.r.t. to a human defined performance measure

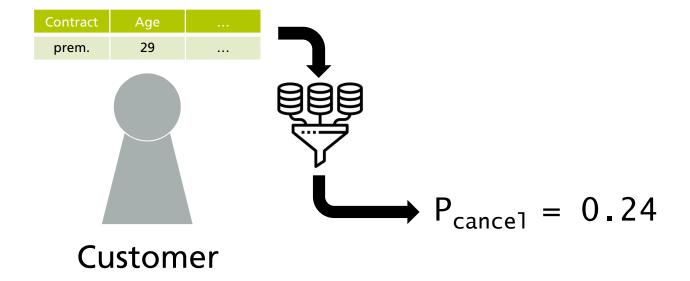
In many businesses predicting customer churn is an essential metric.

Customer attrition, also known as customer churn, customer turnover, or customer defection, is the loss of clients or customers. ...

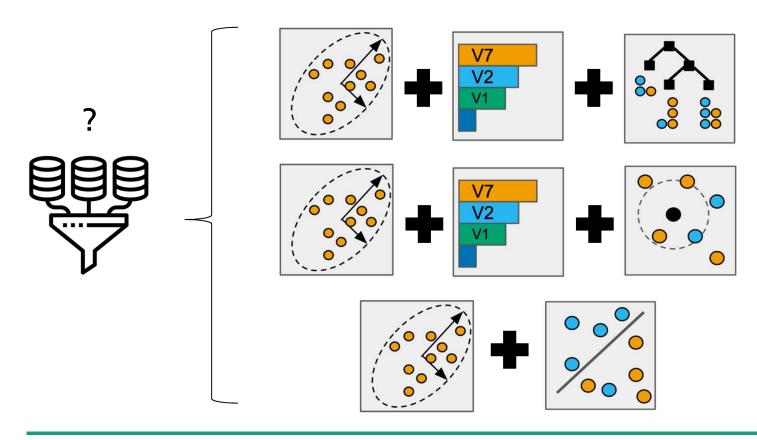
Detect soon which customers are about to abandon ... and put into practice personalized retention plans.

https://en.wikipedia.org/wiki/Customer_attrition

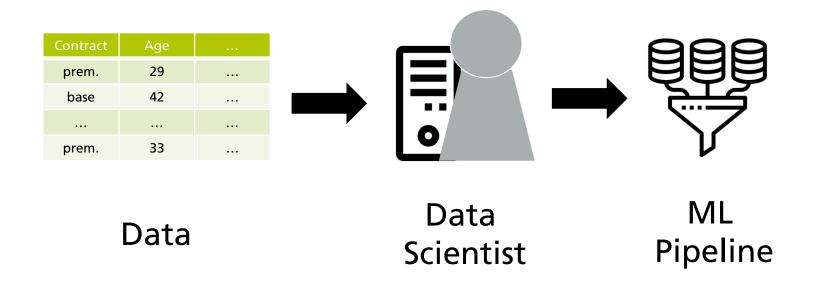
In many businesses predicting customer churn is an essential metric.



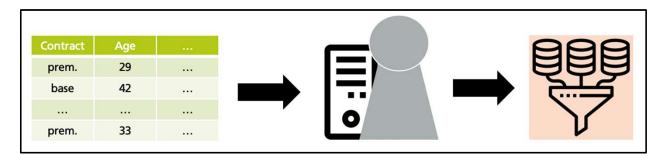
 Machine learning pipelines are composed of many interchangable steps



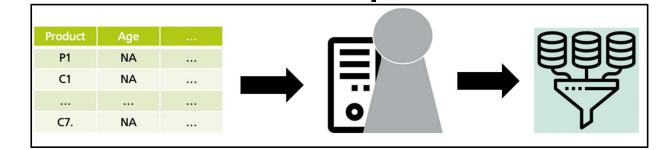
 Data Scientists select machine learning pipelines by trial and error, hyperparmeter tuning, preferences and experience based on the structure of the problem.



 This process is done for many different products, customer segments, time periods, ...



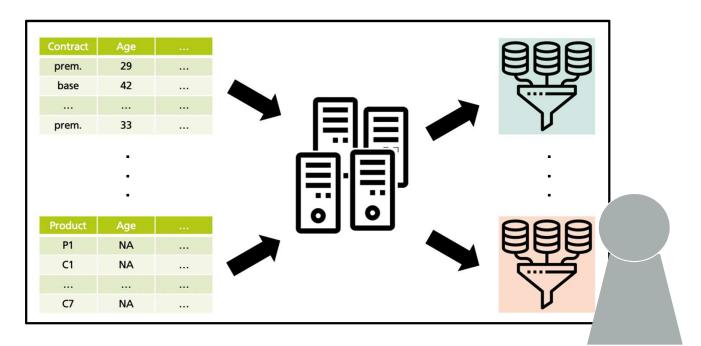
-



- These problems can differ in the
 - amount data
 - available features
 - data quality
 - "difficulty"
 - **.** . . .

- The optimal ML pipeline will be different in many cases
- > ML is still guided by human preferences

Can algorithms be trained to automatically build endto- end machine learning systems?



Data Scientist

Use machine learning to do better machine learning!

Turn

Solution = data + manual exploration + computation

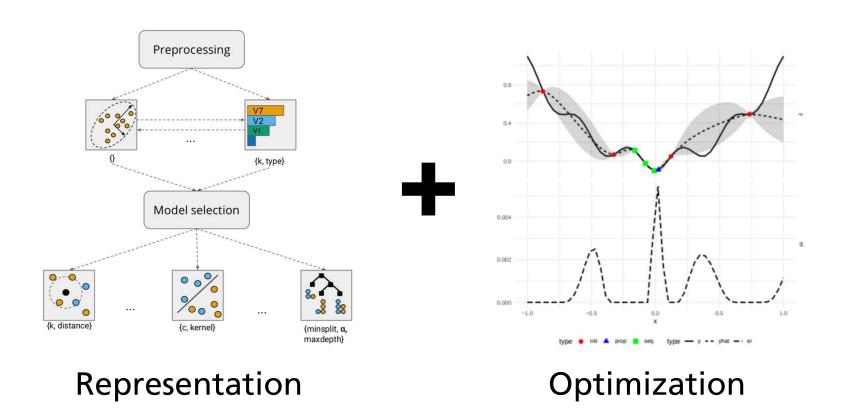
into

Solution = data + computation (x100)

Not about automating data scientists

- Efficient exploration
 - Automate the tedious aspects
 - Make every data scientist a super data scientist
- Democratisation
 - Allow individuals and small companies to use machine learning effectively at lower cost
- > Data Science
 - Understand algorithms, develop better ones
 - Self-learning algorithms

Automatic Machine Learning is the **optimization** over a space of **machine learning pipelines** to minimize a cross validated performance measure.

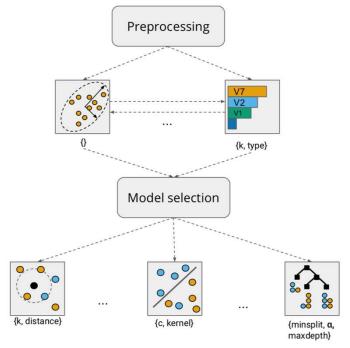


Representation

Machine learning pipelines describe the full process of modeling:

- Preprocessing
- Modeling
- Postprocessing

Each step of these steps can be parameterized.



➤ Pipelines induce a hierarchical, mixed (continous and discrete) search space.

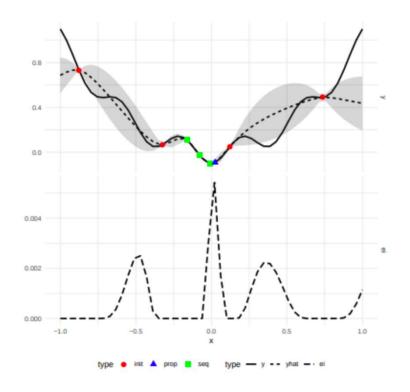
Optimization

Optimization strategies:

- Random search
- Bayesian optimization
- Genetic algorithms
- Reinforcement learning
- ...

Sped up by:

- Meta-learning
- Early stopping
- Data subsampling



Current Challenges of AutoML

Very large and complex search spaces

- ➤ How can the search space be simplified?
- How much performance is lost by restricting the search space?

Lack of flexibility

- > How to consider sparseness, model size, fairness?
- > Multiple objectives or additional constraints?

Finding a good Search Space

- Collect data about machine learning
 - 24 hours on 300.000 CPUs
 - Random exploration
 - > 5tb of ML meta-data

Leibnitz Rechenzentrum SuperMUC NG

- > What can we do with this data?
 - Train surrogate models
 - Learn about important hyperparameter
 - Learn parameter ranges
 - **.**...

Kühn, D., Probst, P., Thomas, J., & Bischl, B. (2018). Automatic Exploration of Machine Learning Experiments on OpenML. arXiv preprint arXiv:1806.10961.

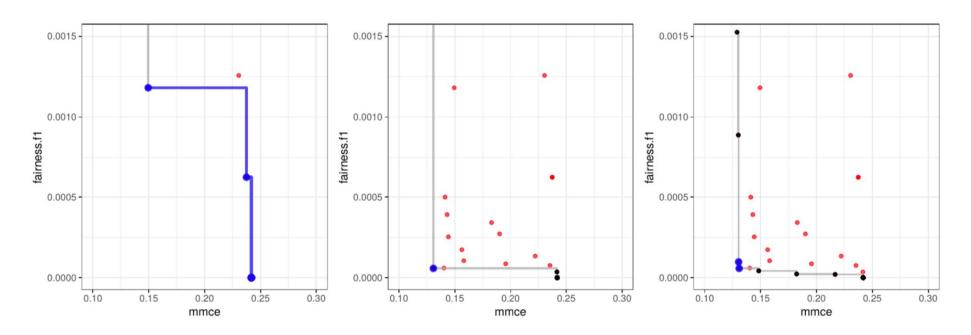
Multi-Objective AutoML

- Current AutoML approaches are very good at optimizing predictive performance!
- Many real-world applications require models that trade of or are good with respect to multiple objectives.

Problem:

- Too narrow focus on a single measure for predictive performance!
- Users either use AutoML without considering other objectives, or do analysis manually!

Multi-Objective AutoML



Pareto front of fairness and predictive performance (mmce) after 20, 70 and 120 iterations of AutoxgboostMC.

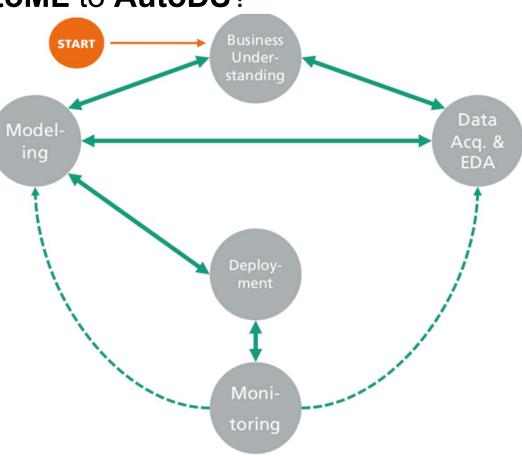
Pfisterer, F., Coors, S., Thomas, J., & Bischl, B. (2019). Multi-Objective Automatic Machine Learning with AutoxgboostMC. *ECMLPKDD Workshop on Automating Data Science (ADS)*

Automating Data Science

How do we move from **AutoML** to **AutoDS**?

Automation (potential) of the full machine learnin lifecycle:

- Automated EDA
- Automated deployment
- Automated monitoring



> ECMLPKDD Workshop on Automating Data Science 2019

Thank You!

janek.thomas@scs.fraunhofer.de

Kühn, D., Probst, P., Thomas, J., & Bischl, B. (2018). Automatic Exploration of Machine Learning Experiments on OpenML. *arXiv preprint arXiv:1806.10961*.

Pfisterer, F., Coors, S., Thomas, J., & Bischl, B. (2019). Multi-Objective Automatic Machine Learning with AutoxgboostMC. *ECMLPKDD Workshop on Automating Data Science (ADS)*

