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Machine Learning

One goal of ML is to replace human decision processes, 
with their preferences, bias and unreliability, with an 

optimal* automatic data driven process. 

*Optimal w.r.t. to a human defined performance measure
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The Case for Automating Machine Learning

 In many businesses predicting customer churn is an 
essential metric.

Customer attrition, also known as customer
churn, customer turnover, or customer
defection, is the loss of clients or customers. …

Detect soon which customers are about to
abandon …  and put into practice personalized
retention plans.

https://en.wikipedia.org/wiki/Customer_attrition
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The Case for Automating Machine Learning

 In many businesses predicting customer churn is an 
essential metric.

Contract Age …

prem. 29 …

Pcancel = 0.24

Customer
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The Case for Automating Machine Learning

 Machine learning pipelines are composed of many
interchangable steps

?
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The Case for Automating Machine Learning

 Data Scientists select machine learning pipelines by
trial and error, hyperparmeter tuning, preferences and
experience based on the structure of the problem.

Contract Age …

prem. 29 …

base 42 …

… … …

prem. 33 …

Data
Data 

Scientist
ML 

Pipeline



7

The Case for Automating Machine Learning

 This process is done for many different products, 
customer segments, time periods, …

.

.

.
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The Case for Automating Machine Learning

 These problems can differ in the
 amount data
 available features
 data quality
 „difficulty“
 …

 The optimal ML pipeline will be different in many
cases

 ML is still guided by human preferences
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Automatic Machine Learning (AutoML)

 Can algorithms be trained to automatically build end-
to- end machine learning systems? 

Data 
Scientist

.

.

.

.

.
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Automatic Machine Learning (AutoML)

Use machine learning to do better machine
learning!

Turn

Solution = data + manual exploration + computation

into

Solution = data + computation (x100)
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Automatic Machine Learning (AutoML)

Not about automating data scientists

 Efficient exploration
 Automate the tedious aspects
 Make every data scientist a super data scientist

 Democratisation
 Allow individuals and small companies to use

machine learning effectively at lower cost

 Data Science
 Understand algorithms, develop better ones
 Self-learning algorithms
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Automatic Machine Learning (AutoML)

Automatic Machine Learning is the optimization over 
a space of machine learning pipelines to minimize a 
cross validated performance measure. 

Representation Optimization
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Representation

Machine learning pipelines describe the full process of
modeling: 

 Preprocessing
 Modeling
 Postprocessing

Each step of these steps can
be parameterized.

 Pipelines induce a hierarchical, mixed (continous and
discrete) search space.
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Optimization

Optimization strategies: 
 Random search
 Bayesian optimization
 Genetic algorithms
 Reinforcement learning
 … 

Sped up by: 
 Meta-learning
 Early stopping
 Data subsampling
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Current Challenges of AutoML

Very large and complex search spaces
 How can the search space be simplified? 
 How much performance is lost by restricting the search

space?

Lack of flexibility
 How to consider sparseness, model size, fairness? 
 Multiple objectives or additional constraints?
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Finding a good Search Space

 Collect data about machine
learning
 24 hours on 300.000 CPUs
 Random exploration
 5tb of ML meta-data

Kühn, D., Probst, P., Thomas, J., & Bischl, B. (2018). Automatic Exploration of Machine Learning 
Experiments on OpenML. arXiv preprint arXiv:1806.10961.

Leibnitz Rechenzentrum
SuperMUC NG What can we do with this data?

 Train surrogate models
 Learn about important hyperparameter
 Learn parameter ranges
 …



17

Multi-Objective AutoML

 Current AutoML approaches are very good at 
optimizing predictive performance! 

 Many real-world applications require models that
trade of or are good with respect to multiple 
objectives. 

Problem: 

 Too narrow focus on a single measure for predictive
performance! 

 Users either use AutoML without considering other
objectives, or do analysis manually! 
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Multi-Objective AutoML

Pfisterer, F., Coors, S., Thomas, J., & Bischl, B. (2019). Multi-Objective Automatic Machine
Learning with AutoxgboostMC. ECMLPKDD Workshop on Automating Data Science (ADS)

Pareto front of fairness and predictive performance (mmce) 
after 20, 70 and 120 iterations of AutoxgboostMC.
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Automating Data Science

How do we move from AutoML to AutoDS?

Automation (potential)
of the full machine learning
lifecycle:

• Automated EDA
• Automated deployment
• Automated monitoring

 ECMLPKDD Workshop on Automating Data Science 2019
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Thank You!

Pfisterer, F., Coors, S., Thomas, J., & Bischl, B. (2019). Multi-Objective Automatic Machine
Learning with AutoxgboostMC. ECMLPKDD Workshop on Automating Data Science (ADS)

Kühn, D., Probst, P., Thomas, J., & Bischl, B. (2018). Automatic Exploration of Machine Learning 
Experiments on OpenML. arXiv preprint arXiv:1806.10961.

janek.thomas@scs.fraunhofer.de 


