Energy-efficient coordination and control of rail traffic in real time

© AdriFerrer - AdobeStock.com

As the largest single consumer of electricity in Germany, rail transportation still leaves significant energy and CO2 savings potential untapped despite the many advances that have been made. The research project »EKSSE - Energy-efficient coordination and control of rail transport in real time« therefore aims to reduce the energy demand in subway operations by increasing the rate of regenerative braking and energy-saving driving behavior, thereby significantly increasing the energy efficiency of German rail transport, making it more cost-effective and thus making an important contribution to modern, sustainable mobility.

The focus is on the optimal use of the degrees of freedom in the flow of rail traffic in real time, i.e. during operation. A coordinated, optimized selection of the trajectories of the trains on the lines and their stopping times in the stations can reduce the overall electricity demand, which is why a mixed integer program is being developed in the project to determine the most energy-efficient permissible timetable. A prediction model is integrated that uses a Bayesian network to determine forecasts of delays in subway operation.

The optimized timetable model enables the targeted synchronization of departing and arriving trains and thus increases the usable proportion of braking energy fed back into the power grid (so-called recovery rate). In addition, the peak electricity demand can be reduced by avoiding too many simultaneous departures in the grid.

In order to optimize the driving profiles, an iterative process is used that combines the advantages of continuous and discrete optimization methods. Continuous methods enable detailed and realistic modeling while maintaining the efficiency of discrete methods.

The individual components for optimizing the timetable and the travel profiles are brought together in a demonstrator that shows the methods in use. This is intended to illustrate the potential for use in the systems of the application partners.

You might also be interested in

 

Energieeffiziente Fahrplanoptimierung

Experten der Friedrich-Alexander-Universität Erlangen-Nürnberg und des Fraunhofer-Instituts für Integrierte Schaltungen IIS arbeiten zusammen mit der VAG Verkehrs-Aktiengesellschaft daran, durch eine effizienten Fahrweise in Verbindung mit einer intelligenten Koordination aller Bahnen den Energieverbrauch der Nürnberger U-Bahn zu senken.

 

ADA Lovelace Center

Kompetenzsäule Mathematische Optimierung

Die mathematische Optimierung ist unverzichtbarer Bestandteil der modellbasierten Entscheidungsunterstützung, indem sie Planungslösungen in so unterschiedlichen Bereichen wie der Logistik, Energiesystemen, und Mobilität liefert, um nur wenige Beispiele zu nennen. Im ADA Lovelace Center wird die umfangreiche bestehende Expertise in mehrere aussichtsreiche Richtungen, namentlich der Echtzeitplanung und -steuerung weiterentwickelt.

Optimization

Lesen Sie hier mehr über unsere Kompetenzen im Bereich mathematischer Optimierung und das gezielte Suchen einer optimalen Lösung für eine wohldefinierte Fragestellung.