ADA Lovelace Center Publikationen

Hier finden Sie die im ADA Lovelace Center entstandenen Publikationen.


[79] Altstidl T.; Kram S.; Herrmann O.; Stahlke M.; Feigl T.; Mutschler C. (2021). Accuracy-Aware Compression of Channel Impulse Responses Using Deep Learning. In: Proceedings of the International Conference on Indoor Positioning and Indoor Navigation (IPIN 2021).

[78] Baermann A.; Gemander P.; Martin A.; Merkert M.; Nöth F. (2021). Energy-Efficient Timetabling in a German Underground System. In: Success Stories of Industrial Mathematics in Germany (eingeladenes Buchkapitel, Editoren: Küfer et al.).

[77] Bärmann A.; Martin A.; Schneider O. (2021). Efficient Formulations and Decomposition Approach es for Power Peak Reduction in Railway Traffic via Timetabling. In: Transportation Science, Vol. 55.

[76] Bärmann A.; Mehringer J.; Menden C.; Neumann U.; Schemm J.; Schneider O.; Sonnleitner B.; Weissenbäck M. (2021). Data Analytics in der Supply Chain (Whitepaper).

[75] Bärmann A.; Schneider O. (2021). Set Characterizations and Convex Extensions for Geometric Convex-Hull Proofs. In: Mathematical Programming.

[74] Bruns V.; Huss R.; Kuritcyn P.; Benz M.; Ebigbo A.; Probst A.; Palm C.; Wittenberg T.; Geppert C.; Hartmann A.; Messmann H.; Märkl B. (2021). Adapting an Adenocarcinoma-Trained Tissue Cartography AI Model to Early Lesions and Adenoma. Virtuelle Pathologietage der Deutschen Gesellschaft für Pathologie.

[73] Deuschel J.; Foltyn A. (2021). Benchmarking Robustness to Natural Distribution Shifts for Facial Analysis. NeurIPS 2021 Workshop on Distribution Shifts: Connecting Methods and Applications.

[72] Deuschel J.; Firmbach D.; Geppert C.; Eckstein M.; Hartmann A.; Bruns V.; Kuritcyn P.; Dexl J.; Hartmann D.; Perrin D.; Wittenberg T.; Benz M. (2021). Multi-Prototype Few-Shot Learning in Histopathology. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) Workshops.

[71] Deuschel J.; Finzel B.; Rieger I. (2021). Uncovering the Bias in Facial Expressions.

[70] Dexl J.; Benz M.; Bruns V.; Kuritcyn P.; Wittenberg T. (2021). MitoDet: Simple and Robust Mitosis Detection. In: Proceedings of the MICCAI 2021. LNCS 13166.

[69] Feigl T.; Eberlein E.; Kram S.; Mutschler C. (2021). Robust ToA-Estimation using Convolutional Neural Networks on Randomized Channel Models. In: Proceedings of the International Conference on Indoor Positioning and Indoor Navigation. (IPIN 2021).

[68] Foltyn A.; Deuschel J. (2021). Towards Reliable Multimodal Stress Detection under Distribution Shift. In: Companion Publication of the 2021 International Conference on Multimodal Interaction (ICMI ’21 Companion).

[67] Henne M.; Gansloser J.; Schwaiger A.; Weiss G. (2021). Machine-Learning Methods for Enhanced Reliable Perception of Autonomous Systems.

[66] Gansloser J. (2021). Methoden zur Absicherung von Machine Learning Verfahren in sicherheitskritischen Systemen. (2021). Forum Safety & Security 2021.

[65] Gerostathopoulos I.; Plasil F.; Prehofer C.; Thomas J.; Bischl B. (2021). Automated Online Experiment-Driven Adaptation – Mechanics and Cost Aspects. In: IEEE Access Journal.

[64] Goschenhofer J.; Hvingelby R.; Ruegamer D.; Thomas J.; Wagner M.; Bischl B. (2021). Deep Semi-Supervised Learning for Time Series Classification. 20th IEEE International Conference on Machine Learning and Applications (ICMLA).

[63] Kaminwar S.; Goschenhofer J.; Thomas J.; Thon I.; Bischl B. (2021). Structured Verification of Machine Learning Models in Industrial Settings. In: Big Data.

[62] Kuritcyn P.; Benz M.; Dexl J.; Bruns V.; Hartmann A.; Geppert C. (2021). Comparison of CNN Models on a Multi-Scanner Database in Colon Cancer Histology. Medical Imaging with Deep Learning (MIDL 2021).

[61] Kuritcyn P.; Geppert C.; Eckstein M.; Hartmann A.; Bruns V.; Dexl J.; Baghdadlian S.; Hartmann D.; Perrin D.; Wittenberg T.; Benz M. (2021). Robust Slide Cartography in Colon Cancer Histology – Evaluation on a Multi-Scanner Database. In: Bildverarbeitung für die Medizin 2021, Informatik aktuell.

[60] Löffler C.; Reeb L.; Dzibela D.; Marzilger R.; Witt N.; Esko-fier B.; Mutschler C. (2021). Deep Siamese Metric Learning: A Highly Scalable Approach to Searching Unordered Sets of Trajectories. In: ACM Transaction on Intelligent Systems.

[59] Neuhaus P.; Henninger M.; Frotzscher A.; Wetzker U. (2021). Autoencoder-Based Characterisation of Passive IEEE 802.11 Link Level Measurements. 2021 Joint European Conference on Networks and Communications & 6G Summit (EUCNC).

[58] Plinge A.; Kontes G.; Schmidt L. (2021). How to Teach a Machine to Drive in Difficult Situations and Be Able to Rely on It. Forum Künstliche Intelligenz.

[57] Roeder G.; Ott L.; Meier A.; Wunder B.; Wienzek P.; Baermann A.; Liers F.; Schellenberger M. (2021). Analysis and Improvement of LVDC-Grid Stability using Circuit Simulation and Machine Learning – A Case Study. In: Proceedings of the NEIS 2021 – Conference on Sustainable Energy Supply and Energy Storage Systems (IEEE).

[56] Saha B; Becker L.; Garbas J.; Oppelt M.; Foltyn M.; Hettenkofer S.; Lang N.; Struck M.; Rohleder N.; Mahesh B. (2021). Investigation of Relation between Physiological Responses and Personality during Stress Recovery. IEEE International Conference on Pervasive Computing and Communications Workshops and other Affiliated Events (PerCom Workshops).

[55] Sczogiel S.; Neumann U.; Schmitt-Rüth S. (2021). Detecting Social and Ethical Implications of Artificial Intelligence: A Structured Workshop Method from a Social Sciences Perspective. 31st RESER International Conference.

[54] Schmidt L.; Kontes G.; Plinge A.; Mutschler C. (2021). Can You Trust Your Autonomous Car? Interpretable and Verifiably Safe Reinforcement Learning. IEEE Intelligent Vehicles Symposium (Best Paper Award).

[53] Stahlke M.; Kram S.; Ott F.; Feigl T.; Mutschler C. (2021). Estimating TOA Reliability with Variational Autoencoders. In: IEEE Sensors Journal.

[52] Wicht J.; Wetzker U.; Frotzscher A. (2021). Deep Learning Based Real-Time Spectrum Analysis for Wireless Networks. European Wireless 2021.

[51] Wilm F., Benz M.; Bruns V.; Baghdadlian S.; Dexl J.; Hartmann D.; Kuritcyn P.; Weidenfeller M.; Wittenberg T.; Merkel S.; Hartmann A.; Eckstein M.; Geppert C. (2021). Fast Whole-Slide Cartography in Colon Cancer Histology using Superpixels and CNN Classification.

[50] Wittenberg T.; Benz M.; Foltyn A.; Hackner R.; Hetzel J.; Wiesmann V.; Eixelberger T. (2021). Acquisition of Semantics for AI-based Applications in Medical Technologies – An Overview. In: Current Directions in Biomedical Engineering.


[49] Baermann, A.; Gemander P.; Merkert M. (2020). The Clique Problem with Multiple-Choice Constraints under a Cycle-Free Dependency Graph. In: Discrete Applied Mathematics, Vol. 283.

[48] Binder M.; Moosbauer J.; Thomas J.; Bischl B. (2020). Multi-Objective Hyperparameter Tuning and Feature Selection using Filter Ensembles. In: Proceedings of the 2020 Genetic and Evolutionary Computation Conference (GECCO).

[47] Butyrev L.; Edelhäußer T.; Mutschler C. (2020). Deep Reinforcement Learning for Motion Planning of Mobile Robots.

[46] Feigl T.; Grunder L.; Mutschler C.; Roth D. (2020). Real-Time Gait Reconstruction for Virtual Reality Using a Single Sensor. In: Proceedings International Symposium on Mixed and Augmented Reality (ISMAR) pp: 1-8.

[45] Feigl T.; Kram S.; Woller P.; Siddiqui, R.; Philippsen M. (2020). RNN-Aided Human Velocity Estimation from a Single IMU. In: J. Sensors Vol. 20 (13), Nr. 3656, pp. 1-43.

[44] Feigl T.; Porada A.; Steiner S.; Löffler C.; Mutschler C.; Philippsen M. (2020). Localization Limitations of ARCore, ARKit, and Hololens in Dynamic Large-Scale Industry Environments. In: Proceedings International Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (GRAPP), pp. 1-13.

[43] Gemander P.; Chen W.; Weninger D.; Gottwald L.; Gleixner A.; Martin A. (2020). Two-row and two-column mixed-integer presolve using hashing-based pairing methods. In: EURO Journal on Computational Optimization, Vol. 8.

[42] Gjoreski M.; Gams M.; Luštrek M.; Genc P.; Garbas J.; Hassan T. (2020). Machine learning and end-to-end deep learning for monitoring driver distractions from physiological and visual signals.

[41] Gruber R.; Gerth S.; Claußen J.; Wörlein N.; Uhlmann N.; Wittenberg T. (2020). Exploring Flood Filling Networks for Instance Segmentation of XXL-Volumetric and Bulk Material CT Data. In: Journal of Nondestructive Evaluation, Volume 40.

[40] Henne M.; Schwaiger A.; Roscher K.; Weiss G. (2020). Benchmarking Uncertainty Estimation Methods for Deep Learning with Safety-Related Metrics. Workshop on Artificial Intelligence Safety. SafeAI-2020.

[39] Koch R.; Pfeiffer N.; Lang N.; Eskofier B.; Amft O.; Struck M.; Wittenberg T. (2020). Evaluation of HRV extraction algorithms from PPG data using neural networks. In: Current Directions in Biomedical Engineering. 6(3).

[38] Kontes G.; Scherer D.; Nisselbeck T.; Fischer J.; Mutschler C. (2020). High-Speed Collision Avoidance using Deep Reinforcement Learning and Domain Randomization for Autonomous Vehicles. In: 2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC), pp. 1-8.

[37] Kram S.; Stahlke M.; Mutschler C. (2020). IPIN Offline Competition: Channel Impulse Responses. In: Proceedings International Conference on Indoor Positioning and Indoor Navigation (IPIN), pp. 1-10.

[36] Löffler C.; Mutschler C. (2020). IALE: Imitating active learner ensembles. International Conference on Learning Representations.

[35] Löffler C.; Nickel C.; Sobel C.; Dzibela D.; Braat J.; Gruhler B.; Woller P.; Witt N.; Mutschler C. (2020). Automated Quality Assurance for Hand-held Tools via Embedded Classification and AutoML. In: European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD), pp. 1-9, ISBN: 978-3-030-67670-4.

[34] Löffler C.; Redzepagic A.; Feigl T.; Mutschler C. (2020). A Sense of Quality for Augmented Reality Assisted Process Guidance. International Symposium on Mixed and Augmented Reality.

[33] Melnychuk V.; Faerman E.; Manakov I.; Seidl T. (2020). Matching the Clinical Reality: Accurate OCT-Based Diagnosis From Few Labels. MICCAI KDAH-CIKM Workshop 2020 - 3rd Workshop on Knowledge-driven Analytics and Systems Impacting Human Quality of Life.

[32] Mishra A.; Löffler C.; Plinge A. (2020). Recipies for Post-Training Quantization of Deep Neural Networks. In: Workshop on Energy Efficient Machine Learning and Cognitive Computing for Embedded Applications (EMC2), pp. 1-12.

[31] Oppelt M.; Riehl M.; Kemeth F.; Steffan J. (2020). Combining Scatter Transform and Deep Neural Networks for Multilabel Electrocardiogram Signal Classification. In: Computing in Cardiology, pp. 1-12.

[30] Ott F.; Feigl T; Löffler C.; Mutschler C. (2020). ViPR: Visual-Odometry-aided Pose Regression for 6DoF Camera Localization. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1-10.

[29] Redzepagic A.; Löffler C.; Feigl T.; Mutschler C. (2020). A Sense of Quality for Augmented Reality Assisted Process Guidance. In: Proceedings International Symposium on Mixed and Augmented Reality (ISMAR), pp. 1-8.

[28] Reeb L.; Dzibela D.; Marzilger R.; Witt N. (2020): Effiziente Suche und Bewertung von Szenen in Spielsportarten. In: 13. Symposium der DVS-Sektion »Sportinformatik und Sporttechnologie«, pp. 1-10.

[27] Sauer A. (2020). Die Gleichstromfabrik: Energieeffizient. Robust. Zukunftsweisend. Buch von Carl Hanser Verlag GmbH Co KG. ISBN: 9783446466128.

[26] Schwaiger A.; Sinhamahapatra p.; Gansloser J.; Roscher K. (2020). Is Uncertainty Quantification in Deep Learning Sufficient for Out-of-Distribution Detection? Workshop on Artificial Intelligence Safety (AISafety 2020).

[25] Stahlke M.; Kram S.; Mutschler C. (2020). NLOS Detection using UWB Channel Impulse Responses and Convolutional Neural Networks. In: Proceedings International Conference on Localization and GNSS (ICL-GNSS).

[24] Thomas J.; Goschenhofer J.; Wagner M.; Thon I. (2020). Limitations and Potentials of AutoML within the Machine Learning Lifecycle. Whitepaper in Industriekooperation.

[23] Thomas J.; Karl F.; Gross R. (2020). State-of-the-art and Limitations of Automated Machine Learning. Whitepaper in Industriekooperation.


[22] Baermann, A.; Büsing, C.; Liers, F. (2019). Globalized Robust Optimization with Gamma-Robustness. In: INFORMS Journal on Computing.

[21] Binder, M.; Moosbauer J.; Thomas J.; Bischl B. (2019). Model-Agnostic Approaches to Multi-Objective Simultaneous Hyperparameter Tuning and Feature Selection.

[20] Butyrev L.; Kontes G.; Löffler C.; Mutschler C. (2019). Overcoming Catastrophic Forgetting via Hessian-free Curvature Estimates.

[19] Chen W.; Gemander P.; Gleixner A.; Gottwald L.; Martin A.; Weninger D. (2019). Two-Row and Two-Column Mixed-Integer Presolve using Hash-Based Pairing Methods. In: European Journal on Computational Optimization.

[18] Feigl T.; Kram S.; Woller P.; Siddiqui R.; Philippsen M.; Mutschler C. (2019). A Bidirectional LSTM for Estimating Dynamic Human Velocities from a Single IMU. International Conference on Indoor Positioning and Indoor Navigation (IPIN), pp. 1-8.

[17] Hassan T.; Seuß D.; Wollenberg J.; Weitz K.; Kunz M.; Lautenbacher S.; Garbas J.; Schmid U. (2019). Automatic detection of pain from facial expressions: a survey. IEEE Transactions on Pattern Analysis and Machine Learning.

[16] Henne M.; Schwainger A.; Weiss G. (2019). Managing Uncertainty of AIbased Perception for Autonomous Systems. Workshop on Artificial Intelligence Safety. Online resource: Co-located with the 28th International Joint Conference on Artificial Intelligence, pp 57-60.

[15] Kram S.; Stahlke M.; Feigl T.; Seitz J.; Thielecke J. (2019). UWB Channel Impulse Responses for Positioning in Complex Environments: A Detailed Feature Analysis. In: Sensors, Vol. 19, Nr. 24 (5547).

[14] Menden C.; Mehringer J.; Martin A.; Amberg M. (2019). Vorhersage von Ersatzteilbedarfen mit Hilfe von Clusteringverfahren. In: HMD Praxis der Wirtschaftsinformatik. (DOI), Vol. 56, pp 1000-1016.

[13] Mutschler C.; Pokutta S. (2019). Self-Supervised Policy Adaptation.

[12] Niitsoo A.; Edelhäußer T.; Eberlein E.; Hadaschik N.; Mutschler C. (2019). A Deep Learning Approach to Position Estimation from Channel Impulse Responses. In: Sensors Vol. 19 Nr. 5 (1064).

[11] Ott F.; Feigl T.; Löffler C.; Mutschler C. (2019). ViPR: Visual-Odometry-aided Pose Regression for 6DoF Camera Localization.

[10] Rabold J.; Deininger H.; Siebers M.; Schmid U. (2019). Enriching Visual with Verbal Explanations for Relational Concepts-Combining LIME with Aleph.

[9] De Raedt L.; Evans R.; Muggleton, S.; Schmid U. (2019). Approaches and Applications of Inductive Programming. In Dagstuhl Reports, Vol. 9, Nr. 5.

[8] Rieger I.; Finzel B.; Seuß D.; Wittenberg T.; Schmid U. (2019). Make Pain Estimation Transparent: A Roadmap to Fuse Bayesian Deep Learning and Inductive Logic Programming (Poster). 41st Annual International Conference of the IEEE Engineering in Medicine & Biology Society.

[7] Rüger S.; Firsching M.; Lucic J.; Ennen A.; Uhlmann N.; Wittenberg T. (2019). Automated detection of bone splinters in DEXA phantoms using deep neural networks. In Current Directions in Biomedical Engineering, Vol. 5, Nr. 1, pp: 281-283.

[6] Schallner L.; Rabold J.; Scholz O.; Schmid U. (2019). Effect of Superpixel Aggregation on Explanations in LIME - A Case Study with Biological Data.

[5] Schmid U.; Finzel B.; Mutual Explanations for Cooperative Decision Making in Medicine. In Künstliche Intelligenz, Vol. 34, Nr. 2. 2020, pp: 227-233.

[4] Seitzer M.; Foltyn A.; Kemeth F. (2019). Improved Disentanglement through Learned Aggregation of Convolutional Feature Maps. Disentanglement Challenge@NeuIPS 2019 (2. Platz).

[3] Siebers M.; Schmid U. (2019). Please delete that! Why should I? - Explaining learned irrelevance classifications of digital objects. (2019) In Künstliche Intelligenz, Vol. 33, Nr. 1, pp: 35-44.

[2] Weitz K.; Hassan T.; Schmid U.; Garbas J. (2019). Deep-learned faces of pain and emotions: Elucidating the differences of facial expressions with the help of explainable AI methods. In tm-Technisches Messen Vol. 86, Nr. 7-8, pp: 404-412.

[1] Zobel P.; Rathke M.; Mühldorfer S.; Wittenberg T. (2019). Computer Aided Detection of Polyps in White Light-Colonoscopy Images using Deep Neural Networks. In Current Directions in Biomedical Engineering, Vol. 5, Nr. 1, pp: 231-234.